
Dean E. Dauger - Dauger Research, Inc.

To achieve accessible computational power for our research, we developed, on
the Macintosh platform, the tools to build easy-to-use numerically-intensive
parallel computing clusters. We find that the usability and reliability of the Mac
cluster technology is as important as its performance. Our approach is
designed to allow the user, without expertise in the operating system, to most
efficiently develop and run parallel code, enabling the most effective
advancement of scientific research. By "reinventing" the cluster computer, we
provide a unique solution designed to maximize accessibility for users.

To support numerically-intensive and tightly-coupled problems that demand the
computational power and networking capabilities of clusters of Macintoshes,
our software technology supports five implementations of the Message-Passing
Interface (MPI), today a dominant industry standard. MPI's status implies how
its underlying computing paradigm has revealed itself to be the most efficient
and economical way yet found to apply large numbers of processing "cores"
effectively for general purposes.

We present two new applications of our approach to clustering:

1. The new Supercomputing Engine for Mathematica enables Wolfram
Research's Mathematica to be combined with the programming paradigm of
today's supercomputers. In contrast to typical master-slave "grid"s, this solution
instead closely follows MPI, from inside the Mathematica environment, and has
every kernel in the cluster communicate with each other both directly and
collectively, necessary to address the largest problems in scientific computing.

2. Modern compression/decompression (codec) algorithms for video
processing increasingly have compression times that vastly exceed playback
times. We address this emerging computational demand using MPI-based
cluster computing. We implement load-balancing parallelization of QuickTime
video compression, including frame-reordering H.264, and interface our cluster
support software with mainstream desktop video-editing applications such as
Final Cut Pro.

The reign of the single-processor computer is over
The popularized version of Moore’s law, expecting doubling performance per
processor, has come to an end. Finding no other avenue, processor makers
instead offer chips with multiple “Core”s. Software writers, in order to best use
multiple Core hardware, must choose an efficient programming paradigm. [3]

In addition to implementing and extending a series of MPI calls to Mathematica,
high-level communication and processing calls that implement common
communication patterns based on our experience with parallel codes. The
result is a merge of the latest ideas from HPC and Mathematica. [7]

Structure
Applying the paradigm of distributed-memory MPI to Mathematica, our
technology launches multiple instances of the Mathematica kernel, each under
the control of an instance of our mathpooch module. These mathpooch
modules constructs and uses a low-level MPI network communications layer.
Expressions transmitted from any kernel are intercepted by mathpooch,
forwarded between mathpooch’s using the low-level MPI, then recreated in the
target kernel elsewhere on the cluster. For the Mathematica environment, this
process creates the illusion that Mathematica is calling MPI, but in fact our
technology is transmitting the expression as data using the low-level MPI.

1. http://daugerresearch.com/vault/aua.shtml
2. http://daugerresearch.com/pooch/recipe.shtml
3. http://daugerresearch.com/vault/parallelparadigm.shtml
4. http://daugerresearch.com/vault/parallellife.shtml
5. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html
6. http://daugerresearch.com/vault/parallelzoology.shtml
7. http://daugerresearch.com/pooch/mathematica/
8. http://daugerresearch.com/pooch/quicktime/

Portions of this work are patented or patent-pending. The Supercomputing
Engine for Mathematica was produced in partnership with Zvi Tannenbaum of
Advanced Cluster Systems plus the assistance of Wolfram Research.

Thanks goes to Viktor K. Decyk, the UCLA Plasma Physics Group, and the
Applied Cluster Computing group at NASA’s Jet Propulsion Laboratory for their
support over the years. Particularly, our thanks goes to the late John M.
Dawson for his support at the most sensitive stages of this work.

“Plug-and-Play” Cluster Computing Brings HPC to the Mainstream

Abstract Parallel Paradigms Supercompute Mathematica Clustering QuickTime H.264

Example: Parallel Life
Conway’s “Game of Life” can be
implemented in parallel using an
“nearest-neighbor” message-
passing pattern. [4] Messages
maintain the edges of each
partition of the problem space.

What’s wrong with shared memory and threads?
This parallel computing paradigm assumes a series of processing threads that
all have shared access to all memory of the system. The problems with this
approach are two-fold:

• Software: Because memory is shared, threads may step on each others’
work, potentially giving erroneous results randomly. Determinism, formerly a
defining feature of a computer, is easily obliterated, requiring the programmer
to track down and eliminate such non-determinism. E. A. Lee of UC Berkeley
writes in The Problem with Threads: “… we in fact require that programmers of
multithreaded systems be insane.” [5]

• Hardware: Data is commonly served from memory using a shared bus that
easily can be overwhelmed by the transaction requests of the processing
cores. Beyond 16 cores, this memory bus is so taxed that hardware makers
must design much more expensive, complex technology to compensate.

Silicon Graphics, Inc., exclusively championed this approach in HPC until
declaring bankruptcy in 2006. The same approach is in practice in all currently
shipping Intel-based Macs and PCs.

then perform their work and coordinate using MPI like modern supercomputers,
and the Front End can display the results.

The calls
The API of the Supercomputing Engine is divided into three categories:

• Low-level MPI: Point-to-point transmissions, synchronous and asynchronous
• Collective MPI: Communications involving any subset of processors
• High-level communcations: Implement commonly used tasks, behaviors, and
communications patterns present across parallel computing.

Since “Everything is an Expression” in Mathematica, subroutines, functions,
graphics, sound, and equations can be sent via MPI, not just data.

© 2007 Dauger Research, Inc.

Inventing the Mac Cluster

References

Supercomputing Engine for Mathematica
We began by implementing an MPI library within the
Mathematica environment, an industry first. Combining
our easy-to-use, patented Pooch cluster technology with
Wolfram Research’s Mathematica creates a technology
with unprecedented capabilities neither could do alone.

Distributed-memory message-passing
Inherited from 25 years of lessons experienced
in the high-performance computing (HPC)
industry, the paradigm of distributed memory
MPI (Message-Passing Interface) assumes
multiple processing cores operate with their own
exclusive section of memory and share data and
instructions with one another via a network.

Common “grid” implementations have one
manager or “controller” machine that collects
work from source applications or “clients” and
forwards them to computing nodes or “agents”.
HPC practitioners easily recognize the
bottlenecks inherent in this “master-slave”
scheme. While it works for simple problems that
have negligible communication needs, HPC
would never consider such an approach for
general-purpose parallel computing due to data
congestion issues inherent in this design. [6]

What’s wrong with master-slave “grid”s?

Because this parallel computing paradigm covers a wide variety of processing
patterns while using hardware economically, this approach is so widely used
today in HPC that MPI is the de facto, portable standard at supercomputing
centers worldwide.

Kernel

mathpooch

Kernel

mathpooch

Kernel

mathpooch • • •

Front End

(optional)

The Mathematica
Front End, if present,
connects to instance
#0 of mathpooch. It
intercepts commands
from the Front End
and forwards them via
the mathpooch’s on
the cluster to all the
kernels. The kernels

SEM Library Supported Calls

Low-level MPI mpiSend, mpiRecv, mpiIsend, mpiIRecv, mpiTest…

Collective MPI mpiBcast, mpiAlltoAll, mpiReduce, mpiCommSplit…

High-level ParallelTranspose, ParallelNIntegrate, EdgeCell …

Pooch QuickTime Exporter
The first to accelerate H.264 encoding using MPI-based
clusters, the Pooch QuickTime Exporter plug-in accepts data
from any video editing application that uses the QuickTime
component architecture and redistributes it onto a Mac cluster
for parallelized encoding by any QuickTime-supported codec. [8]

For video streaming situations, a binary tree
communications pattern, supported by MPI, is
appropriate because the current frame may be
dependent on the data from any of the previous
frames. Here it would be possible to have each
processor on the cluster compress only its
assigned portion of the video feed and return its
compressed section as it monitors the feed.
This is impractical in a master-slave approach.

For content creators and other
video producers, this technology
can produce simultaneously
multiple compression formats,
varying both in codec settings
and frame sizes, to make most
efficient use of limited source
speed (15 fps for HD) from video
editors like Final Cut, iMovie,
and After Effects targeted for
Apple TV, websites, iPods,
DVDs, and other devices.

Plug-and-play cluster computing
Our group was the first to build a Mac cluster, one
using Macintosh hardware and operating system.
Starting in 1998, we wrote MacMPI, the first
Message-Passing Interface implementation for the
Macintosh, which enabled parallel codes that ran on
the largest supercomputers to run on the Mac. [1]

Since that time, we evolved the technology to use
TCP/IP and Mac OS X, even clustering Intel-based
and PowerPC-based Macs. The latest incarnation of
the user interface is the Pooch Application, featuring
the only modern, easy-to-use, drag-and-drop interface
to parallel computing. [2]

