
Numerically-Intensive "Plug-and-Play" Parallel Computing

Dean E. Dauger
Dauger Research

http://daugerresearch.com/

Viktor K. Decyk
Department of Physics

University of California, Los Angeles
http://exodus.physics.ucla.edu/

Abstract

At UCLA's Plasma Physics Group, we have been
successful in building and using a numerically-intensive
parallel computing cluster using Power Macintosh
hardware and the Macintosh Operating System. Our
solution makes the problem of building and operating a
parallel computer far easier than using other technologies,
allowing the user, without expertise in the operating
system, to efficiently develop and run parallel code. That
advantage enables the user to most effectively advance
scientific research. At the same time, by achieving over
20 Gigaflops on 16 400-MHz G4s, our team has proved
the computational potential of the underlying PowerPC
hardware. The ongoing widespread deployment of OS X, a
Unix-based Mac OS, will provide scientists access to the
best tools of the Mac and Unix in one computing
solution. In the midst of this development, clustering
Macs is poised to become a technology that will move
parallel computing into the mainstream. For details:
http://exodus.physics.ucla.edu/appleseed/

I. Introduction

To answer the need for accessible computing power,
cluster computing is becoming an increasingly popular
suggestion. Some find inspiration in the proliferation of
desktop computing, while others seek that solution
because they find access to large supercomputing centers
to be difficult or unattainable. Both are led to ask if
desktop machines can be combined to satisfy their
computational needs. In this article, we describe our
approach to cluster computing and demonstrate what we
use to operate it.

The increase of desktop computing power in the last
decade has made that idea a practical possibility. That

increase has largely been an indication of an trend
identified as Moore’s law. During that period, the price to
performance ratio of desktop computing hardware has been
decreasing, enough to suggest that such cluster computing
solutions could easily have a price benefit compared to
large supercomputers. That observation became an
inspiration for a new form of parallel computing.

One of the first embodiments of that idea was the
“Beowulf”-style cluster computing introduced in the mid-
1990’s. [1] Beowulf clusters used a parallel computing
message passing library with the Linux operating system.
As Beowulf developed over the years, it has been
implemented on a few different hardware architectures such
as Alpha and PowerPC, but Intel hardware has clearly
become the most popular choice for Beowulf clusters.
Also, Message-Passing Interface (MPI), [2] standardized
by manufacturers of parallel computers used at
supercomputing centers, has become the primary
application programming interface (API) for message
passing between nodes of such clusters. MPI has become
a dominant industry standard, and many MPI
implementations are available under open source license.
Proponents of that approach often quote only the cost of
open source code (free) with commodity Intel hardware
(commodity of the shelf (COTS)) in their price to
performance ratios.

Cost seems to be a major selling point for
proponents of Beowulf clusters. What their proponents
fail to address, however, are other costs incurred due to the
fundamental nature of Beowulf hardware and software.
Beowulf clusters can take significant time to build and to
maintain. For novices, those tasks are especially daunting.
Except for the top experts in the field, system
administrators and other specialists spend weeks or
months just assembling the hardware and installing the
software. Those people also must spend time updating and
fixing the software and hardware if the cluster fails,

Dean Dauger
Published in the IEEE Cluster 2001 Proceedings

because of a breakdown, security breach, software
incompatibilities, or other reasons.

Since no one controls the complete environment,
incompatibilities between hardware manufacturers and
subtle differences in the operating system often become
sufficient to cause failure. Low-cost COTS hardware can
be inconsistent or unreliable, making the cluster fail to
operate. Because they must sell at commodity prices,
commodity hardware manufacturers cannot afford to bear
the responsibility to make sure their hardware reliably
operates in a user’s permutation of hardware and software.
The user must compensate for such problems, increasing
the end-user’s cost.

Linux-based operating systems, while being open
source, are also complicated. Because they are open
source, the software components have a variety of different
authors of varying quality. That fact easily results in
software mismatches while none of them is obligated to
fix bugs or give official support. As in hardware, those
responsibilities must then be assumed by the users of the
software. Tracking down such problems is time
consuming and difficult and requires paid, difficult-to-find,
and therefore expensive, expertise (either hired in-house or
from a consulting company).

In the end, those users learn that Beowulfs can be
fragile. Hence, once their Beowulf is working, users often
resist making any adjustments, much less an operating
system upgrade, for fear of breaking the application. New
hardware generally is not integrated with old.

Those practical problems severely limit Beowulf’s
potential acceptance by mainstream users. The Beowulf
community does not appear to recognize those and other
practical issues such as accessibility. For example, an
operational Beowulf cluster is controlled at a command
line. The Beowulf user-interface has remained at a
command-line level for years and shows little sign of
improving. Thus, it is evident that few computer
scientists are interested in producing a tool for the end
user.

It is time to move parallel computing out of the
realm of experts and into the mainstream. A development
like that would allow parallel computing to have a greater
impact for the end user. This alternative to Linux-based
and other forms of clustering must clearly have the
potential to accomplish this technology transfer. It must
be more productive and cost-effective by requiring only a
minimum of expertise to build and operate the parallel
computer. For example, command-line access should not
be necessary at any time. The simplicity and
straightforwardness of this solution is just as important as
its processing power because power provides nothing if it
cannot be used effectively. This solution would provide a
better price to performance ratio and a higher commitment

to the purpose of such systems: provide the user with
large amounts of accessible computing power.

At UCLA’s Plasma Physics Group, we have been
providing a solution that meets those criteria since 1998.
It is based on the Macintosh Operating System (Mac OS)
using PowerPC-based Macintosh (Power Mac) hardware;
we call it an “AppleSeed”-type cluster. [3] We have seen
the price-of-hardware to performance ratio of Power Macs
to be at least as good as for Intel hardware, but the
simplicity of using this technology easily tips the scales
in AppleSeed’s favor. In April 2001, new software debuted
that streamlined the user experience and added numerous
new features. That development adds features to AppleSeed
clusters that are common on Beowulf clusters.

We have extended the Macintosh’s famous ease-of-use
to parallel computing, and we have extensively used those
technologies for research in physics. Graduate student
researchers in physics and their professors are typically not
interested in computer science issues and would prefer to
spend a maximum of their time researching physics.
Thus, our efforts have been focused on both performance
and streamlining the user experience. In the following, we
describe how we build an AppleSeed cluster and
demonstrate what we use to operate it. By describing the
experience of using the cluster in application to particle-
in-cell (PIC) codes, we show what it is like to use and
what we achieve with it. Not only do we achieve high-
performance results, but we also perform the research we
set out to accomplish and perform it most effectively.
Finally, we briefly describe what we see for the future of
this type of cluster computing, also in light of upcoming
changes in the platform.

II. The Cluster

A. Building a Mac Cluster

The following paragraphs completely define the
components and procedures for setting up an AppleSeed-
type cluster:

Building an AppleSeed cluster begins by collecting
the hardware: Power Mac G3s or G4s, one Category 5
Ethernet cable with RJ-45 jacks per Mac, and an Ethernet
switch. The latest Power Mac models have either Fast
(100BaseT) or Gigabit Ethernet, so a switch of either type
with at least as many ports as there are Macs functions
well. For each Mac, one end of a cable plugs into the
Ethernet jack on the Mac and the other end to a port on
the switch.

The required system software is a simple matter.
Macs (as of this writing) come preinstalled with Mac OS
9 or later. The latest Mac clustering software needs
CarbonLib 1.2 or later, which may or may not already be

present. The latest CarbonLib is available for free
download from Apple. [4]

Configuring the Macs generally involves making sure
each Mac has an working Internet connection and a unique
name, specified in the TCP/IP and File Sharing control
panels, respectively. If the Macs are on an isolated
network, manually configuring the TCP/IP control panel
to use a unique IP address from 192.168.1.1 to
192.168.1.254 is sufficient. (On the Plasma Physics
cluster, we set the sleep time to Never in the Energy
Saver control panel to prevent the Mac from going to
sleep while running a code.)

Finally, a software package called Pooch is used to
operate the cluster. A free demo is available for download.
[5] Running the installer on a hard drive of each Mac
completes the parallel computer.

The reader should deduce two major points from its
simplicity of the above description. First, the time spent
by the end-user is short: the typical time required per node
is a few minutes. Second, the absence of further details
about the cluster expresses how reliably it tolerates
variations in configuration while interfacing and operating
with hardware and software. The hardware need not be
identical. The network interfaces can vary (100BaseT,
10BaseT, Gigabit, IrDA (infrared), Airport (wireless)).

Motherboards can be different (G3s of any speed, G4s of
any speed, multiple processors, desktops, portables).
Also, the above installation and configuration easily
coexists with almost all other applications because the
existence of extra applications and system extensions are
generally unimportant to cluster functions. Even the
operating system on some cluster machines can be any
variant of OS 9, a Mac OS descendent, while others are
running the fundamentally-different, Unix-based OS X.
The AppleSeed design has great implications for the
mainstream because end users (including dedicated
physicists) have little concern for such details.

B. Running a Mac Cluster

For the purpose of testing an AppleSeed-type parallel
computer, the AltiVec Fractal Carbon demo, a
demonstration parallel application, is available for free
download. [5] This demonstration of high-performance
computing can run on a single-node as well.

The user runs this application in parallel by selecting
New Job… from the File menu of Pooch. This action
opens up a new Job Window. The user may drag the
AltiVec Fractal Carbon demo from the Finder to this Job
Window, depicted in Figure 1.

Figure 1. To set up a parallel computing job, the user drags a parallel application, in this case the AltiVec Fractal
Carbon demo, and drop it in the Job Window of Pooch.

Next, the user chooses nodes to run on. By default,
Pooch selects the node where the job is being specified.
To add more, the user clicks on Select Nodes…, which
invokes a Node Scan Window, shown in Figure 2.
Double-clicking on a node moves it to the node list of the
Job Window.

Finally, the parallel job must be started by clicking

on Launch Job, shown in Figure 3. Pooch should now be
distributing copies of the parallel application to the other
nodes and initiating them in parallel. Upon completion of
its computational task, the demo then calculates its
achieved performance, which should be significantly
greater than single-node performance.

Figure 2. Selecting nodes is performed using the Node Scan Window, invoked by clicking on Select Nodes…
from the window in the previous figure.

Figure 3. With the job ready, it begins with one more click.

Pooch debuted in April 2001. It is designed to provide
users maximum accessibility to parallel computing. Like
its predecessor, Pooch never requires a command-line
instruction. It can organize the job’s files into
subdirectories on the other nodes and retrieve files on
those nodes containing output from completed jobs. But
Pooch adds new features to AppleSeed clusters. Some of
these new features were inspired by those common to
Beowulf clusters and large supercomputers. It contains
mechanisms for queuing jobs and launching them only
when certain conditions have been met. It also has the
ability to kill running jobs, launching jobs, and queued
jobs. And all of its functions can operate securely via the
Internet.

In addition, Pooch provides new features not
commonly available on Beowulf clusters. This software
provides discovery services, that is, a service to discover
the existence and addresses of other nodes on the network,
via TCP/IP on any subnet of the Internet. It has the
ability to determine up-to-the-minute information about
nodes, including their availability and capability. Finally,
Pooch’s components have the capability of automatic

node discovery and selection.

III. Results

A. Network Performance

As on other parallel computing platforms, a library
for message passing between nodes is available. We call
the 45 routine subset of Message-Passing Interface (MPI)
supported on the Macintosh platform MacMPI. MacMPI,
freely available from the AppleSeed site at UCLA
Physics, is a wrapper library that calls the Mac OS
networking APIs. The latest version of MacMPI is called
MacMPI_X and uses Apple’s latest Open Transport
implementation of TCP/IP. [6]

Using MacMPI, we achieve excellent network
performance comparable to other networking
implementations. We use a ping-pong and swap
benchmark (where pairs of processors exchange packets of
equal size) to probe that performance. With 100BaseT
Ethernet and Power Mac G3/350 hardware we achieve near
peak speed of 100BaseT for large messages. Figure 4

shows that the high bandwidth is achieved for message
sizes of around 4096 words or larger. The best bandwidth
measured is about 90% of the peak theoretical speed of
100BaseT hardware.

Figure 4. Networking benchmark using TCP/IP
through MacMPI on Power Mac G3 hardware

connected via a Cisco Fast Ethernet switch. The
performance on a Pentium II Linux cluster is also

shown for comparison.
Apple’s most recent versions of their Power Mac G4

hardware also come with built-in Gigabit Ethernet ports.
Running the ping-pong test using two such Macs
connected via a crossover Ethernet cable are shown in
Figure 5. These results show over three times the

performance of 100BaseT.

Figure 5. Ping-pong networking benchmark using
two G4/450’s using Gigabit networking on a

crossover cable. The previous 100BaseT results are
shown for comparison.

B. Parallel Computing Performance

The performance of the cluster was excellent for
certain classes of problems, mainly those where
communication was small compared to the calculation and
the message packet size was large.

3D Particle Benchmarks

Computer Type Push Time Loop Time
(nsec) (sec)

Mac G4/450, IP cluster, 8 proc: 772 2756.9
Mac G4/450, IP cluster, 4 proc: 1928 6715.3
Mac G4/450, IP cluster, 2 proc: 4676 16234.3

Cray T3E-900, w/MPI, 8 proc: 1800 6196.3
Cray T3E-900, w/MPI, 4 proc: 3844 13233.7

IBM SP2, w/MPL, 8 proc: 2104 7331.1

Table I. The above are times for a 3D particle simulation, using 7,962,624 particles and a 64x32x128 mesh for
425 time steps. Push Time is the time taken to update one particle's position and deposit its charge (but without
the field solve), for one time step. Loop Time is the time to run the entire simulation minus the initialization time.

Both measurements include the communications time necessary to complete the tasks.

The AltiVec Fractal demo, used for the example job
in Section II, uses the Single Instruction Multiple Data
(SIMD) instruction unit known as the Velocity Engine (or
AltiVec) to compute a color graphical representation of a
Mandelbrot-style fractal. It decomposes the problem
according to scan lines of the image. Each processor is
assigned a different set of scan lines, and the results are
collected for display at node zero. That demo has achieved

over 6 Gigaflops on a pair of dual-processor G4/450’s and
over 20 Gigaflops on the UCLA Department of Statistics’
16 G4/400 cluster.

Results for the large 3D benchmark described in Ref.
[7,8] are summarized in Table I. One can see that the Mac
cluster performance was better than that achieved by the
Cray T3E-900 and the IBM SP2/266. Indeed, the recent
advances in computational performance is astonishing.

In addition, a recent (February 2001) milestone was
set with AppleSeed software. We were able to run a 100
million particle 3D electrostatic PIC simulation on an
eight-node Macintosh G4/450 dual processor cluster.
Since the Plasma Physics cluster at UCLA did not have
machines large enough to do the job, we used Bedros
Afeyan's Polymath 2000 cluster instead, [9] which had 1
GB of memory per node. The total time was 17.8 seconds
per time step, with a grid of 128x128x256. As of this
writing, the cost of such machines was less than $2500
per node. It was only six years ago that such calculations
required the world's largest supercomputers!

IV. Real-World Application

A. Flexibility

The inexpensive and powerful cluster of Power Mac
G3s and G4s has become a valuable addition to the UCLA
Plasma Physics group. We use it to introduce new
members of our group to parallel computing and run large
calculations for extended periods. Although some
problems can only run on the supercomputer centers due
to their large size, the turnaround time for jobs on the
cluster is often much shorter than those in the
supercomputer centers because we do not have to share
this resource with the entire country. That feature makes
the cluster very appropriate for small- and medium-sized
jobs, allowing the supercomputing centers to focus on the
largest jobs, a task for which they are much better suited.

The solution at UCLA Physics is fairly unique in
that half of the nodes are not dedicated for parallel
computing. We purchase high-end Macs and devote them
for computation while reassigning the older, slower Macs
for individual (desktop) use and data storage. Thus, we are
reusing the Macs in the cluster, making for a very cost-
effective solution to satisfy both our parallel computing
and desktop computing needs. The AppleSeed-type cluster
is unique in this regard, made possible by how tolerant the
software is of variations in configuration.

In addition, the flexibility of the AppleSeed-type
cluster allows us to redirect computational resources very
quickly within the group. That ability is useful for
unfunded research or exploratory projects, so we can better
prepare for an official proposal later. If one investigator
needs to meet a short deadline, such as for a conference,
that person can ask the research group, borrow their
desktop Macs, and combine them with the dedicated Macs
for one large job or many smaller ones.

The presence of the cluster has encouraged new
members of our group and visitors to learn how to write
portable, parallel MPI programs, which they can run later
on larger computers elsewhere. In fact, since Fast Ethernet

is slow compared to the networks used by large parallel
supercomputers, beginning parallel programmers are
encouraged to develop better, more efficient algorithms
that use less communication. Later, when they move the
code to a larger parallel computer, the code scales very
well with larger numbers of processors. The cluster also
encourages a more interactive style of parallel
programming, in contrast to the more batch-oriented
processing encouraged by traditional supercomputer
centers. We are able to display on desktop machines the
results of calculations made elsewhere in the cluster. That
even allows us to study a simulation partway through the
calculation, much like checking the oven before the turkey
is done. Checking for mistakes early allows one to save a
great deal of computation time that might otherwise be
wasted.

B. Parallel Code Development

So that the Plasma group’s physics researchers
(students, post-docs, etc.) can maximize their time
studying physics, we have added enhancements to
MacMPI that make it easier for them to develop parallel
programs. Those enhancements are beyond MacMPI’s
basic message-passing functions.

One of these is the monitoring of MPI messages,
controlled by a monitor flag in MacMPI. This flag may
be set to log every message sent or received. In its default
setting, a small monitor window appears, shown in
Figure 6. In this window, status lights indicate whether
the node whose screen is being examined is sending and/or
receiving messages from any other node. Since messages
normally are sent very fast, these lights blink rapidly.
However, if a deadlock occurs, which is a common
occurrence for beginning programmers, the lights will
stay lit. The moment such a problem occurs, a particular
color pattern is immediately visible to the user, who can
then apply the new information to debugging the code.

The monitor window also shows a histogram of the
size of messages being sent or received. Since network
based cluster computers have a large overhead (latency) in
sending messages, it is better to avoid sending many short
messages. The purpose of this histogram is to draw the
user’s attention to the length of the messages the code is
sending.

Other features of this window include room at the
bottom of the status window for a one-line message of the
user’s choice. That feature is useful for displaying the
current procedure or time step being executed.

Two dials are also shown in MacMPI_X’s monitor
window. One dial shows the approximate percent of time
spent in communication, a quantity that should be
minimized. Both the time average over the whole run and

the instantaneous value are shown. The second dial is a
speedometer which shows the average and instantaneous
speeds achieved during communication. While
approximate, those indicators have been invaluable in
revealing problems in the code and the network.

Figure 6. The monitor window of MacMPI_X, which
keeps track of statistics about the execution of the

running parallel application.

C. Physics

The PIC codes at the UCLA Plasma Physics Group
are used in a number of High-Performance Computing
projects, such as modeling fusion reactors [10] and
advanced accelerators [11]. For those projects massively
parallel computers are required, such as the 512-node Cray
T3E at NERSC. However, the group has found it very
convenient to perform research projects on more modest
but user-friendly parallel machines such as the Macintosh
clusters. The resources of the large computers can then
focus on large problems for which they are better suited.

Simplifying the problem of building, operating, and
maintaining a parallel cluster allows our group to use its
cluster to focus on physics research. The AppleSeed
cluster at UCLA Physics is primarily used for plasma
physics projects. One of those is the Numerical Tokamak
Turbulence Project. The goal of that project is to predict
plasma and heat transport in fusion energy devices. Recent
calculations have concentrated on studying various
mechanisms of turbulence suppression in devices such as
the Electric Tokamak, under construction at UCLA. [12]
The researchers involved use AppleSeed for smaller
problems when they need fast turnaround. They also run
the same code on remote supercomputer centers for their
largest calculations.

A second project that used this cluster is a quantum
particle-in-cell code, which models multiparticle quantum
mechanical problems. That code, a recently completed

doctoral work, used a semiclassical approximation of
Feynman path integrals to reduce the calculation to a large
number of classical charged particles moving in an
electromagnetic field. [13] That was a typical underfunded
student project, whose problem size makes it highly
appropriate for the Mac cluster. The largest runs of that
work, some tracing over 100 million classical paths per
time step, were performed on the UCLA Department of
Statistics’ dedicated 16-node G4/400 cluster. [14] Those
runs studied the quantum effects in hot plasmas, such as
those inside the sun. [15] In addition, that project makes
use of sophisticated interactive diagnostics developed on
the Macintosh, including tools that generate QuickTime
movies playing quantum wavefunctions as sound.

We were also highly successful in applying the
cluster’s computational power to a classroom
environment, but the experience serendipitously led to a
plasma physics conference presentation. At UCLA,
Physics 260, entitled “Exploring plasmas using computer
models”, is a computational plasma physics course where
the students learn about plasmas and operate and analyze
data from a plasma physics code. In Fall 2000, Dawson,
et al, assigned students to use the cluster for their course
work. The code, called Parsec and written by John Tonge,
was a 3D fully electromagnetic particle-in-cell code
suitable for investigating the physics of plasma
confinement in a levitated internal conductor device. Some
of the runs contained as many as 50 million particles on
up to a 256x256x128 grid. Such assignments would have
been impossible without the local cluster. The runs could
be started at the end of class on one day, and then the
output could be retrieved for analysis at the next class
meeting. Because of their large queues and run-time
limitations, it was impossible for supercomputing centers
to meet such a need. The course of the student work led to
an academic contribution to the field. [16] The researchers
involved consider their experience an indication of the
power of the AppleSeed approach to physics research and,
in their words, call it “a real success story.”

V. Future

We see the future for computation on Macintosh
being very bright. As with all parallel computing, the
problem remains finding the best way to program in
parallel. Recent developments bring AppleSeed clusters’
feature set on par with other cluster types. However,
unlike other cluster types, the AppleSeed solution makes
the problem of building and operating a parallel computer
easy and therefore enables the user to most efficiently
write, debug, and run parallel codes. That advantage is
unique to Mac clusters. We believe our work shows that
Mac clusters, relative to other cluster types, enable its

users to most effectively advance their scientific research.
By combining parallel computing with a well-

established platform like Macintosh, we can use shrink-
wrap applications, such as IDL and Mathematica, to
visualize the output of our code. We have even used IDL
to display the live output of a plasma physics parallel
application and display it in the Visualization Portal [17],
a large 24’ by 8’ screen at the UCLA Computer Center.
As the physics code ran, it produced a series of output
files containing electric potential data and labeled
according to their time step. Then an AppleScript was
used to monitor the appearance of these files, and feed
them at specified intervals via AppleEvents to IDL. IDL
then presented the data, frame by frame, on a Power Mac
connected to the Visualization Portal’s projectors. That set
up is a proof-of-principle for live presentation of
simulation data from a running parallel computation. An
experimentalist, unconcerned with computational details,
could use such a solution in tandem with a physical
apparatus.

The Power Mac G4 hardware comes with a SIMD
instruction unit named AltiVec, with a peak speed of eight
flops per clock. We intend to better utilize that powerful
processor with our physics codes, starting with the time-
critical parts of the physics code, as others at NASA
Langley Research Center have done. [18] Also, many of
the new Power Mac G4s come contain dual G4s. We have
modified portions of our codes to use that feature, and we
intend to continue such optimizations.

We also expect to make enhancements to Pooch in
the coming months. We intend to enhance AppleSeed
clusters’ ability to interface with existing applications by
adding standardized mechanisms for Pooch to respond to
commands from other applications. Such features could
allow, for example, IDL to direct Pooch to launch a
parallel physics simulation code, which then supplies data
for live display in IDL. That ability would allow for
greater automation of the above proof-of-principle
demonstration. We plan on adding synergistic features to
MacMPI and Pooch to report live diagnostic information
to remote machines. We intend to add automatic node
selection features, based on node load and capabilities, to
enable metacomputing-grid possibilities, much like that
promised by Globus. [19] And, of course, Pooch will
evolve in response to user feedback.

The Macintosh platform is in the midst of a change.
Mac OS X, the future of the Mac OS, is based on Unix.
[20] Many Unix applications are already being ported, or
have been ported, to the new operating system. The latest
AppleSeed software runs on OS X. As we have done with
IDL, those Unix applications could be combined with
parallel computing on OS X. Or they could be made into

parallel applications themselves. Even libraries used for
Beowulf’s message passing, could in principle be ported
to OS X. As of this writing, LAM-MPI, with
modification, is functioning on X. Combining the best of
Unix with the best of the Mac is upon us. Macintosh
clusters have the potential to be a boon for scientific and
computational work of all kinds.

VI. References

[1] T. L. Sterling, J. Salmon, D. J. Becker, and D. F.
Savarese, How to Build a Beowulf, [MIT Press, Cambridge,
MA, USA, 1999].
[2] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J.
Dongarra, MPI: The Complete Reference [MIT Press,
Cambridge, MA, 1996]; William Gropp, Ewing Lush, and
Anthony Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface [MIT Press,
Cambridge, MA, 1994].
[3] V. K. Decyk, D. Dauger, and P. Kokelaar, “How to Build
An AppleSeed: A Parallel Macintosh Cluster for Numerically
Intensive Computing,” Physica Scripta T84, 85, 2000.
[4] http://asu.info.apple.com/
[5] See http://daugerresearch.com/
[6] http://developer.apple.com/techpubs/macosx/Carbon/ne
tworkcomm/OpenTransport/opentransport.html
[7] V. K. Decyk, “Benchmark Timings with Particle Plasma
Simulation Codes,” Supercomputer 27, vol V-5, p. 33 (1988).
[8] V. K. Decyk, “Skeleton PIC Codes for Parallel
Computers,” Computer Physics Communications 87, 87
(1995).
[9] http://polymath-usa.com/
[10] R. D. Sydora, V. K. Decyk, and J. M. Dawson,
“Fluctuation-induced heat transport results from a large global
3D toroidal particle simulation model”, Plasma Phys.
Control. Fusion 38, A281 (1996).
[11] K.-C. Tzeng, W. B. Mori, and T. Katsouleas, “Electron
Beam Characteristics from Laser-Driven Wave Breaking,”
Phys. Rev. Lett. 79, 5258 (1997).
[12] M. W. Kissick, J. N. Leboeuf, S. Cowley, J. M. Dawson,
V. K. Decyk, P. A. Gourdain, J. L. Gauvreau, L. W. Schmitz,
R. D. Sydora, and G. R. Tynan, "Radial electric field required
to suppress ion temperature gradient modes in the electric
tokamak",
Phys. Plasmas 6, 4722 (1999).
[13] http://dauger.com/DaugerDissertation.pdf
[14] Merav Opher, Luis O. Silva, Dean E. Dauger, Viktor K.
Decyk and John M. Dawson, "Nuclear reaction rates and
energy in stellar plasmas : The effect of highly damped
modes", accepted and to be published in Physics of Plasmas,
2001.
[15] http://www.stat.ucla.edu/research/gSCAD/
[16] Chengkin Huang, John Tonge, Jean-Noel Leboeuf, and
John M. Dawson, “Particle Simulations of Plasma
Confinement in a Levitated Dipole”, International Sherwood
Fusion Theory Conference, Paper 1C46, April 2001.
[17] http://www.oac.ucla.edu/portal/
[18] http://ad–www.larc.nasa.gov/~cah/NASA_G4_Study.pdf
[19] http://www.globus.org/
[20] http://www.apple.com/macosx/

