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Abstract

At UCLA's Plasma Physics Group, we have been 
successful in building and using a numerically-intensive 
parallel computing cluster using Power Macintosh 
hardware and the Macintosh Operating System. Our 
solution makes the problem of building and operating a 
parallel computer far easier than using other technologies, 
allowing the user, without expertise in the operating 
system, to efficiently develop and run parallel code. That 
advantage enables the user to most effectively advance 
scientific research. At the same time, by achieving over 
20 Gigaflops on 16 400-MHz G4s, our team has proved 
the computational potential of the underlying PowerPC 
hardware. The ongoing widespread deployment of OS X, a 
Unix-based Mac OS, will provide scientists access to the 
best tools of the Mac and Unix in one computing 
solution. In the midst of this development, clustering 
Macs is poised to become a technology that will move 
parallel computing into the mainstream. For details: 
http://exodus.physics.ucla.edu/appleseed/ 

I. Introduction

To answer the need for accessible computing power, 
cluster computing is becoming an increasingly popular 
suggestion. Some find inspiration in the proliferation of 
desktop computing, while others seek that solution 
because they find access to large supercomputing centers 
to be difficult or unattainable. Both are led to ask if 
desktop machines can be combined to satisfy their 
computational needs. In this article, we describe our 
approach to cluster computing and demonstrate what we 
use to operate it. 

The increase of desktop computing power in the last 
decade has made that idea a practical possibility. That 

increase has largely been an indication of an trend 
identified as Moore’s law. During that period, the price to 
performance ratio of desktop computing hardware has been 
decreasing, enough to suggest that such cluster computing 
solutions could easily have a price benefit compared to 
large supercomputers. That observation became an 
inspiration for a new form of parallel computing. 

One of the first embodiments of that idea was the 
“Beowulf”-style cluster computing introduced in the mid-
1990’s. [1] Beowulf clusters used a parallel computing 
message passing library with the Linux operating system. 
As Beowulf developed over the years, it has been 
implemented on a few different hardware architectures such 
as Alpha and PowerPC, but Intel hardware has clearly 
become the most popular choice for Beowulf clusters. 
Also, Message-Passing Interface (MPI), [2] standardized 
by manufacturers of parallel computers used at 
supercomputing centers, has become the primary 
application programming interface (API) for message 
passing between nodes of such clusters. MPI has become 
a dominant industry standard, and many MPI 
implementations are available under open source license. 
Proponents of that approach often quote only the cost of 
open source code (free) with commodity Intel hardware 
(commodity of the shelf (COTS)) in their price to 
performance ratios. 

Cost seems to be a major selling point for 
proponents of Beowulf clusters. What their proponents 
fail to address, however, are other costs incurred due to the 
fundamental nature of Beowulf hardware and software. 
Beowulf clusters can take significant time to build and to 
maintain. For novices, those tasks are especially daunting. 
Except for the top experts in the field, system 
administrators and other specialists spend weeks or 
months just assembling the hardware and installing the 
software. Those people also must spend time updating and 
fixing the software and hardware if the cluster fails, 
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because of a breakdown, security breach, software 
incompatibilities, or other reasons. 

Since no one controls the complete environment, 
incompatibilities between hardware manufacturers and 
subtle differences in the operating system often become 
sufficient to cause failure. Low-cost COTS hardware can 
be inconsistent or unreliable, making the cluster fail to 
operate. Because they must sell at commodity prices, 
commodity hardware manufacturers cannot afford to bear 
the responsibility to make sure their hardware reliably 
operates in a user’s permutation of hardware and software. 
The user must compensate for such problems, increasing 
the end-user’s cost. 

Linux-based operating systems, while being open 
source, are also complicated. Because they are open 
source, the software components have a variety of different 
authors of varying quality. That fact easily results in 
software mismatches while none of them is obligated to 
fix bugs or give official support. As in hardware, those 
responsibilities must then be assumed by the users of the 
software. Tracking down such problems is time 
consuming and difficult and requires paid, difficult-to-find, 
and therefore expensive, expertise (either hired in-house or 
from a consulting company). 

In the end, those users learn that Beowulfs can be 
fragile. Hence, once their Beowulf is working, users often 
resist making any adjustments, much less an operating 
system upgrade, for fear of breaking the application. New 
hardware generally is not integrated with old. 

Those practical problems severely limit Beowulf’s 
potential acceptance by mainstream users. The Beowulf 
community does not appear to recognize those and other 
practical issues such as accessibility. For example, an 
operational Beowulf cluster is controlled at a command 
line. The Beowulf user-interface has remained at a 
command-line level for years and shows little sign of 
improving. Thus, it is evident that few computer 
scientists are interested in producing a tool for the end 
user. 

It is time to move parallel computing out of the 
realm of experts and into the mainstream. A development 
like that would allow parallel computing to have a greater 
impact for the end user. This alternative to Linux-based 
and other forms of clustering must clearly have the 
potential to accomplish this technology transfer. It must 
be more productive and cost-effective by requiring only a 
minimum of expertise to build and operate the parallel 
computer. For example, command-line access should not 
be necessary at any time. The simplicity and 
straightforwardness of this solution is just as important as 
its processing power because power provides nothing if it 
cannot be used effectively. This solution would provide a 
better price to performance ratio and a higher commitment 

to the purpose of such systems: provide the user with 
large amounts of accessible computing power. 

At UCLA’s Plasma Physics Group, we have been 
providing a solution that meets those criteria since 1998. 
It is based on the Macintosh Operating System (Mac OS) 
using PowerPC-based Macintosh (Power Mac) hardware; 
we call it an “AppleSeed”-type cluster. [3] We have seen 
the price-of-hardware to performance ratio of Power Macs 
to be at least as good as for Intel hardware, but the 
simplicity of using this technology easily tips the scales 
in AppleSeed’s favor. In April 2001, new software debuted 
that streamlined the user experience and added numerous 
new features. That development adds features to AppleSeed 
clusters that are common on Beowulf clusters. 

We have extended the Macintosh’s famous ease-of-use 
to parallel computing, and we have extensively used those 
technologies for research in physics. Graduate student 
researchers in physics and their professors are typically not 
interested in computer science issues and would prefer to 
spend a maximum of their time researching physics. 
Thus, our efforts have been focused on both performance 
and streamlining the user experience. In the following, we 
describe how we build an AppleSeed cluster and 
demonstrate what we use to operate it. By describing the 
experience of using the cluster in application to particle-
in-cell (PIC) codes, we show what it is like to use and 
what we achieve with it. Not only do we achieve high-
performance results, but we also perform the research we 
set out to accomplish and perform it most effectively. 
Finally, we briefly describe what we see for the future of 
this type of cluster computing, also in light of upcoming 
changes in the platform. 

II. The Cluster

A. Building a Mac Cluster

The following paragraphs completely define the 
components and procedures for setting up an AppleSeed-
type cluster:

Building an AppleSeed cluster begins by collecting 
the hardware: Power Mac G3s or G4s, one Category 5 
Ethernet cable with RJ-45 jacks per Mac, and an Ethernet 
switch. The latest Power Mac models have either Fast 
(100BaseT) or Gigabit Ethernet, so a switch of either type 
with at least as many ports as there are Macs functions 
well. For each Mac, one end of a cable plugs into the 
Ethernet jack on the Mac and the other end to a port on 
the switch. 

The required system software is a simple matter. 
Macs (as of this writing) come preinstalled with Mac OS 
9 or later. The latest Mac clustering software needs 
CarbonLib 1.2 or later, which may or may not already be 



present. The latest CarbonLib is available for free 
download from Apple. [4]

Configuring the Macs generally involves making sure 
each Mac has an working Internet connection and a unique 
name, specified in the TCP/IP and File Sharing control 
panels, respectively. If the Macs are on an isolated 
network, manually configuring the TCP/IP control panel 
to use a unique IP address from 192.168.1.1 to 
192.168.1.254 is sufficient. (On the Plasma Physics 
cluster, we set the sleep time to Never in the Energy 
Saver control panel to prevent the Mac from going to 
sleep while running a code.) 

Finally, a software package called Pooch is used to 
operate the cluster. A free demo is available for download. 
[5] Running the installer on a hard drive of each Mac 
completes the parallel computer. 

The reader should deduce two major points from its 
simplicity of the above description. First, the time spent 
by the end-user is short: the typical time required per node 
is a few minutes. Second, the absence of further details 
about the cluster expresses how reliably it tolerates 
variations in configuration while interfacing and operating 
with hardware and software. The hardware need not be 
identical. The network interfaces can vary (100BaseT, 
10BaseT, Gigabit, IrDA (infrared), Airport (wireless)). 

Motherboards can be different (G3s of any speed, G4s of 
any speed, multiple processors, desktops, portables). 
Also, the above installation and configuration easily 
coexists with almost all other applications because the 
existence of extra applications and system extensions are 
generally unimportant to cluster functions. Even the 
operating system on some cluster machines can be any 
variant of OS 9, a Mac OS descendent, while others are 
running the fundamentally-different, Unix-based OS X. 
The AppleSeed design has great implications for the 
mainstream because end users (including dedicated 
physicists) have little concern for such details. 

B. Running a Mac Cluster

For the purpose of testing an AppleSeed-type parallel 
computer, the AltiVec Fractal Carbon demo, a 
demonstration parallel application, is available for free 
download. [5] This demonstration of high-performance 
computing can run on a single-node as well. 

The user runs this application in parallel by selecting 
New Job… from the File menu of Pooch. This action 
opens up a new Job Window. The user may drag the 
AltiVec Fractal Carbon demo from the Finder to this Job 
Window, depicted in Figure 1. 

Figure 1. To set up a parallel computing job, the user drags a parallel application, in this case the AltiVec Fractal 
Carbon demo, and drop it in the Job Window of Pooch. 

Next, the user chooses nodes to run on. By default, 
Pooch selects the node where the job is being specified. 
To add more, the user clicks on Select Nodes…, which 
invokes a Node Scan Window, shown in Figure 2. 
Double-clicking on a node moves it to the node list of the 
Job Window. 

Finally, the parallel job must be started by clicking 

on Launch Job, shown in Figure 3. Pooch should now be 
distributing copies of the parallel application to the other 
nodes and initiating them in parallel. Upon completion of 
its computational task, the demo then calculates its 
achieved performance, which should be significantly 
greater than single-node performance. 



Figure 2. Selecting nodes is performed using the Node Scan Window, invoked by clicking on Select Nodes… 
from the window in the previous figure. 

Figure 3. With the job ready, it begins with one more click. 

Pooch debuted in April 2001. It is designed to provide 
users maximum accessibility to parallel computing. Like 
its predecessor, Pooch never requires a command-line 
instruction. It can organize the job’s files into 
subdirectories on the other nodes and retrieve files on 
those nodes containing output from completed jobs. But 
Pooch adds new features to AppleSeed clusters. Some of 
these new features were inspired by those common to 
Beowulf clusters and large supercomputers. It contains 
mechanisms for queuing jobs and launching them only 
when certain conditions have been met. It also has the 
ability to kill running jobs, launching jobs, and queued 
jobs. And all of its functions can operate securely via the 
Internet. 

In addition, Pooch provides new features not 
commonly available on Beowulf clusters. This software 
provides discovery services, that is, a service to discover 
the existence and addresses of other nodes on the network, 
via TCP/IP on any subnet of the Internet. It has the 
ability to determine up-to-the-minute information about 
nodes, including their availability and capability. Finally, 
Pooch’s components have the capability of automatic 

node discovery and selection. 

III. Results

A. Network Performance

As on other parallel computing platforms, a library 
for message passing between nodes is available. We call 
the 45 routine subset of Message-Passing Interface (MPI) 
supported on the Macintosh platform MacMPI. MacMPI, 
freely available from the AppleSeed site at UCLA 
Physics, is a wrapper library that calls the Mac OS 
networking APIs. The latest version of MacMPI is called 
MacMPI_X and uses Apple’s latest Open Transport 
implementation of TCP/IP. [6]

Using MacMPI, we achieve excellent network 
performance comparable to other networking 
implementations. We use a ping-pong and swap 
benchmark (where pairs of processors exchange packets of 
equal size) to probe that performance. With 100BaseT 
Ethernet and Power Mac G3/350 hardware we achieve near 
peak speed of 100BaseT for large messages. Figure 4 



shows that the high bandwidth is achieved for message 
sizes of around 4096 words or larger. The best bandwidth 
measured is about 90% of the peak theoretical speed of 
100BaseT hardware. 

Figure 4. Networking benchmark using TCP/IP 
through MacMPI on Power Mac G3 hardware 

connected via a Cisco Fast Ethernet switch. The 
performance on a Pentium II Linux cluster is also 

shown for comparison. 
Apple’s most recent versions of their Power Mac G4 

hardware also come with built-in Gigabit Ethernet ports. 
Running the ping-pong test using two such Macs 
connected via a crossover Ethernet cable are shown in 
Figure 5. These results show over three times the 

performance of 100BaseT. 

Figure 5. Ping-pong networking benchmark using 
two G4/450’s using Gigabit networking on a 

crossover cable. The previous 100BaseT results are 
shown for comparison. 

B. Parallel Computing Performance

The performance of the cluster was excellent for 
certain classes of problems, mainly those where 
communication was small compared to the calculation and 
the message packet size was large. 

3D Particle Benchmarks

Computer Type Push Time Loop Time 
(nsec) (sec)

----------------------------------------- 
Mac G4/450, IP cluster, 8 proc: 772 2756.9 
Mac G4/450, IP cluster, 4 proc: 1928 6715.3 
Mac G4/450, IP cluster, 2 proc: 4676 16234.3 
----------------------------------------- 
Cray T3E-900, w/MPI, 8 proc: 1800 6196.3 
Cray T3E-900, w/MPI, 4 proc: 3844 13233.7 
----------------------------------------- 
IBM SP2, w/MPL, 8 proc: 2104 7331.1 
 

Table I. The above are times for a 3D particle simulation, using 7,962,624 particles and a 64x32x128 mesh for 
425 time steps. Push Time is the time taken to update one particle's position and deposit its charge (but without 
the field solve), for one time step. Loop Time is the time to run the entire simulation minus the initialization time. 

Both measurements include the communications time necessary to complete the tasks. 

The AltiVec Fractal demo, used for the example job 
in Section II, uses the Single Instruction Multiple Data 
(SIMD) instruction unit known as the Velocity Engine (or 
AltiVec) to compute a color graphical representation of a 
Mandelbrot-style fractal. It decomposes the problem 
according to scan lines of the image. Each processor is 
assigned a different set of scan lines, and the results are 
collected for display at node zero. That demo has achieved 

over 6 Gigaflops on a pair of dual-processor G4/450’s and 
over 20 Gigaflops on the UCLA Department of Statistics’ 
16 G4/400 cluster. 

Results for the large 3D benchmark described in Ref. 
[7,8] are summarized in Table I. One can see that the Mac 
cluster performance was better than that achieved by the 
Cray T3E-900 and the IBM SP2/266. Indeed, the recent 
advances in computational performance is astonishing. 



In addition, a recent (February 2001) milestone was 
set with AppleSeed software. We were able to run a 100 
million particle 3D electrostatic PIC simulation on an 
eight-node Macintosh G4/450 dual processor cluster. 
Since the Plasma Physics cluster at UCLA did not have 
machines large enough to do the job, we used Bedros 
Afeyan's Polymath 2000 cluster instead, [9] which had 1 
GB of memory per node. The total time was 17.8 seconds 
per time step, with a grid of 128x128x256. As of this 
writing, the cost of such machines was less than $2500 
per node. It was only six years ago that such calculations 
required the world's largest supercomputers! 

IV. Real-World Application

A. Flexibility

The inexpensive and powerful cluster of Power Mac 
G3s and G4s has become a valuable addition to the UCLA 
Plasma Physics group. We use it to introduce new 
members of our group to parallel computing and run large 
calculations for extended periods. Although some 
problems can only run on the supercomputer centers due 
to their large size, the turnaround time for jobs on the 
cluster is often much shorter than those in the 
supercomputer centers because we do not have to share 
this resource with the entire country. That feature makes 
the cluster very appropriate for small- and medium-sized 
jobs, allowing the supercomputing centers to focus on the 
largest jobs, a task for which they are much better suited. 

The solution at UCLA Physics is fairly unique in 
that half of the nodes are not dedicated for parallel 
computing. We purchase high-end Macs and devote them 
for computation while reassigning the older, slower Macs 
for individual (desktop) use and data storage. Thus, we are 
reusing the Macs in the cluster, making for a very cost-
effective solution to satisfy both our parallel computing 
and desktop computing needs. The AppleSeed-type cluster 
is unique in this regard, made possible by how tolerant the 
software is of variations in configuration. 

In addition, the flexibility of the AppleSeed-type 
cluster allows us to redirect computational resources very 
quickly within the group. That ability is useful for 
unfunded research or exploratory projects, so we can better 
prepare for an official proposal later. If one investigator 
needs to meet a short deadline, such as for a conference, 
that person can ask the research group, borrow their 
desktop Macs, and combine them with the dedicated Macs 
for one large job or many smaller ones. 

The presence of the cluster has encouraged new 
members of our group and visitors to learn how to write 
portable, parallel MPI programs, which they can run later 
on larger computers elsewhere. In fact, since Fast Ethernet 

is slow compared to the networks used by large parallel 
supercomputers, beginning parallel programmers are 
encouraged to develop better, more efficient algorithms 
that use less communication. Later, when they move the 
code to a larger parallel computer, the code scales very 
well with larger numbers of processors. The cluster also 
encourages a more interactive style of parallel 
programming, in contrast to the more batch-oriented 
processing encouraged by traditional supercomputer 
centers. We are able to display on desktop machines the 
results of calculations made elsewhere in the cluster. That 
even allows us to study a simulation partway through the 
calculation, much like checking the oven before the turkey 
is done. Checking for mistakes early allows one to save a 
great deal of computation time that might otherwise be 
wasted. 

B. Parallel Code Development

So that the Plasma group’s physics researchers 
(students, post-docs, etc.) can maximize their time 
studying physics, we have added enhancements to 
MacMPI that make it easier for them to develop parallel 
programs. Those enhancements are beyond MacMPI’s 
basic message-passing functions. 

One of these is the monitoring of MPI messages, 
controlled by a monitor flag in MacMPI. This flag may 
be set to log every message sent or received. In its default 
setting, a small monitor window appears, shown in 
Figure 6. In this window, status lights indicate whether 
the node whose screen is being examined is sending and/or 
receiving messages from any other node. Since messages 
normally are sent very fast, these lights blink rapidly. 
However, if a deadlock occurs, which is a common 
occurrence for beginning programmers, the lights will 
stay lit. The moment such a problem occurs, a particular 
color pattern is immediately visible to the user, who can 
then apply the new information to debugging the code. 

The monitor window also shows a histogram of the 
size of messages being sent or received. Since network 
based cluster computers have a large overhead (latency) in 
sending messages, it is better to avoid sending many short 
messages. The purpose of this histogram is to draw the 
user’s attention to the length of the messages the code is 
sending. 

Other features of this window include room at the 
bottom of the status window for a one-line message of the 
user’s choice. That feature is useful for displaying the 
current procedure or time step being executed. 

Two dials are also shown in MacMPI_X’s monitor 
window. One dial shows the approximate percent of time 
spent in communication, a quantity that should be 
minimized. Both the time average over the whole run and 



the instantaneous value are shown. The second dial is a 
speedometer which shows the average and instantaneous 
speeds achieved during communication. While 
approximate, those indicators have been invaluable in 
revealing problems in the code and the network. 

Figure 6. The monitor window of MacMPI_X, which 
keeps track of statistics about the execution of the 

running parallel application. 

C. Physics

The PIC codes at the UCLA Plasma Physics Group 
are used in a number of High-Performance Computing 
projects, such as modeling fusion reactors [10] and 
advanced accelerators [11]. For those projects massively 
parallel computers are required, such as the 512-node Cray 
T3E at NERSC. However, the group has found it very 
convenient to perform research projects on more modest 
but user-friendly parallel machines such as the Macintosh 
clusters. The resources of the large computers can then 
focus on large problems for which they are better suited. 

Simplifying the problem of building, operating, and 
maintaining a parallel cluster allows our group to use its 
cluster to focus on physics research. The AppleSeed 
cluster at UCLA Physics is primarily used for plasma 
physics projects. One of those is the Numerical Tokamak 
Turbulence Project. The goal of that project is to predict 
plasma and heat transport in fusion energy devices. Recent 
calculations have concentrated on studying various 
mechanisms of turbulence suppression in devices such as 
the Electric Tokamak, under construction at UCLA. [12] 
The researchers involved use AppleSeed for smaller 
problems when they need fast turnaround. They also run 
the same code on remote supercomputer centers for their 
largest calculations. 

A second project that used this cluster is a quantum 
particle-in-cell code, which models multiparticle quantum 
mechanical problems. That code, a recently completed 

doctoral work, used a semiclassical approximation of 
Feynman path integrals to reduce the calculation to a large 
number of classical charged particles moving in an 
electromagnetic field. [13] That was a typical underfunded 
student project, whose problem size makes it highly 
appropriate for the Mac cluster. The largest runs of that 
work, some tracing over 100 million classical paths per 
time step, were performed on the UCLA Department of 
Statistics’ dedicated 16-node G4/400 cluster. [14] Those 
runs studied the quantum effects in hot plasmas, such as 
those inside the sun. [15] In addition, that project makes 
use of sophisticated interactive diagnostics developed on 
the Macintosh, including tools that generate QuickTime 
movies playing quantum wavefunctions as sound. 

We were also highly successful in applying the 
cluster’s computational power to a classroom 
environment, but the experience serendipitously led to a 
plasma physics conference presentation. At UCLA, 
Physics 260, entitled “Exploring plasmas using computer 
models”, is a computational plasma physics course where 
the students learn about plasmas and operate and analyze 
data from a plasma physics code. In Fall 2000, Dawson, 
et al, assigned students to use the cluster for their course 
work. The code, called Parsec and written by John Tonge, 
was a 3D fully electromagnetic particle-in-cell code 
suitable for investigating the physics of plasma 
confinement in a levitated internal conductor device. Some 
of the runs contained as many as 50 million particles on 
up to a 256x256x128 grid. Such assignments would have 
been impossible without the local cluster. The runs could 
be started at the end of class on one day, and then the 
output could be retrieved for analysis at the next class 
meeting. Because of their large queues and run-time 
limitations, it was impossible for supercomputing centers 
to meet such a need. The course of the student work led to 
an academic contribution to the field. [16] The researchers 
involved consider their experience an indication of the 
power of the AppleSeed approach to physics research and, 
in their words, call it “a real success story.” 

V. Future

We see the future for computation on Macintosh 
being very bright. As with all parallel computing, the 
problem remains finding the best way to program in 
parallel. Recent developments bring AppleSeed clusters’ 
feature set on par with other cluster types. However, 
unlike other cluster types, the AppleSeed solution makes 
the problem of building and operating a parallel computer 
easy and therefore enables the user to most efficiently 
write, debug, and run parallel codes. That advantage is 
unique to Mac clusters. We believe our work shows that 
Mac clusters, relative to other cluster types, enable its 



users to most effectively advance their scientific research. 
By combining parallel computing with a well-

established platform like Macintosh, we can use shrink-
wrap applications, such as IDL and Mathematica, to 
visualize the output of our code. We have even used IDL 
to display the live output of a plasma physics parallel 
application and display it in the Visualization Portal [17], 
a large 24’ by 8’ screen at the UCLA Computer Center. 
As the physics code ran, it produced a series of output 
files containing electric potential data and labeled 
according to their time step. Then an AppleScript was 
used to monitor the appearance of these files, and feed 
them at specified intervals via AppleEvents to IDL. IDL 
then presented the data, frame by frame, on a Power Mac 
connected to the Visualization Portal’s projectors. That set 
up is a proof-of-principle for live presentation of 
simulation data from a running parallel computation. An 
experimentalist, unconcerned with computational details, 
could use such a solution in tandem with a physical 
apparatus. 

The Power Mac G4 hardware comes with a SIMD 
instruction unit named AltiVec, with a peak speed of eight 
flops per clock. We intend to better utilize that powerful 
processor with our physics codes, starting with the time-
critical parts of the physics code, as others at NASA 
Langley Research Center have done. [18] Also, many of 
the new Power Mac G4s come contain dual G4s. We have 
modified portions of our codes to use that feature, and we 
intend to continue such optimizations. 

We also expect to make enhancements to Pooch in 
the coming months. We intend to enhance AppleSeed 
clusters’ ability to interface with existing applications by 
adding standardized mechanisms for Pooch to respond to 
commands from other applications. Such features could 
allow, for example, IDL to direct Pooch to launch a 
parallel physics simulation code, which then supplies data 
for live display in IDL. That ability would allow for 
greater automation of the above proof-of-principle 
demonstration. We plan on adding synergistic features to 
MacMPI and Pooch to report live diagnostic information 
to remote machines. We intend to add automatic node 
selection features, based on node load and capabilities, to 
enable metacomputing-grid possibilities, much like that 
promised by Globus. [19] And, of course, Pooch will 
evolve in response to user feedback. 

The Macintosh platform is in the midst of a change. 
Mac OS X, the future of the Mac OS, is based on Unix. 
[20] Many Unix applications are already being ported, or 
have been ported, to the new operating system. The latest 
AppleSeed software runs on OS X. As we have done with 
IDL, those Unix applications could be combined with 
parallel computing on OS X. Or they could be made into 

parallel applications themselves. Even libraries used for 
Beowulf’s message passing, could in principle be ported 
to OS X. As of this writing, LAM-MPI, with 
modification, is functioning on X. Combining the best of 
Unix with the best of the Mac is upon us. Macintosh 
clusters have the potential to be a boon for scientific and 
computational work of all kinds. 
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